Monday, September 30, 2013

Microcontroller Showdown, Part 1

Recently I bought some LPC1114 microcontrollers from NXP. They come in DIP packages and feature an ARM Core M0. Although comparing the clock speeds of different architectures is not the best indicator of speed, I would still expect this chip running at 50MHz to be faster than the MSP430s running at 16MHz that I have been using until now. Later I found out that the flash of the LPC1114 only runs at 20MHz, which will bottleneck any programs running from there. Running from RAM would be much faster but the chip only has 4KB of SRAM. On the other hand, it does have a three-stage pipeline. Value-line MSP430s only have instruction-prefetch. All of this makes it a bit difficult to know how much faster one chip would be than another, so I have decided to run a few benchmarks.

Another architecture I have been interested in lately is the 8051. This is much older than the other two architectures I want to check but it remains popular with some people. Instructions take 12, 24, or 48 cycles to execute, which is less efficient compared to an MSP430 which needs only 3-6. Some modern 8051s feature a full-pipeline and clock speeds over 30MHz. These are interesting to me because I think they may be able to outperform the MSP430 in some ways. I was able to sample some AT89LP6440s from Atmel and a DS89C450 from Maxim Integrated which both come in DIP packages. The AT89LP6440 can fetch one byte per clock cycle from memory, meaning that it should in practice run slower than 1 MIPS per MHz but still much faster than other 8051s. It does have a hardware multiplier which surprised me to find out. The datasheet for the DS89C450 lists it as one clock-per-machine cycle, so it should run faster MHz per MHz than the AT89LP6440. It can also run at 33MHz compared to the AT89LP6440 at 20MHz.

The last microcontroller I will test is the Z16F from Zilog. This is a 16-bit CISC design descended from the 8-bit Z80. According to the Zilog website, it outperforms many RISC designs in the same class. It can do 32-bit ALU operations, has a hardware multiplier, and does some pipelining. I know the least about this chip but the design is interesting and I may use it in a future project if it performs well.

Here are some specifications of the microcontrollers that will be involved:

Microcontroller   Clock Speed   RAM   Flash   Core
MSP430G255316MHz0.5KB16KBMSP430
LPC1114FN2850MHz4KB32KBARM Core M0
AT89LP644020MHz4KB64KB8051
DS89C45033MHz1KB64KB8051
Z16F281020MHz4KB128KBZNEO

There are many factors that need to be taken into account when choosing a microcontroller. For this test I have decided to test only calculation speed and to ignore other factors such as the peripherals. Consequently, the results will not be relevant to some people. This also will not tell me which microcontroller is the best overall. These particular chips are dissimilar in many ways and this is not a comparison of microcontrollers from the same class. They are only being compared because I am curious about them.

One good reason to do this test is so that I have an excuse to set up the tool chains and programmers for all of these chips. This will take some time so I will release the results in a few parts. It will give me a break from the RPN Scientific Calculator I am making.

Sunday, September 8, 2013

RPN Scientific Calculator: Second MSP430

The next step for the calculator is the interface. The code for handling input ended up being fairly long but now entering numbers works as well as the basic math functions. A lot of flash space was taken up by the mathematical checks that must be done with trig functions to convert them to useable forms and ensure that they are within a valid range.
 
At this point the firmware took up about 14KB, which is close to the 16KB I have to work with. There probably isn't enough space left to add all of the functions and accompanying checks so I decided to add another MSP430. This will give me more more space but also make things more difficult since I will have to coordinate communication between the two. Moving to another chip with more Flash would be an option but I have plenty of MSP430s on hand and I don't want to move chips now that I have everything working well together.

Since I only have one LaunchPad I had to program the second MSP430 on a breadboard. This is pretty easy to do. The LaunchPad has jumpers on the RST and TEST lines where the programming signals can be diverted and used elsewhere. In this case they go to the breadboard, and a dip switch is used to select whether the programming signals go back to the LaunchPad or to the breadboarded chip.

With two chips I have a lot of left over pins. This let me eliminate the read and write shift registers used with the SRAM. The data port is now connected to one whole port of the second MSP430 instead and should work a little faster. The next step was to establish communication between the two chips. Using one pin for data and another as a clock signal, I was able to do some simple data transfers. Unfortunately this caused an error, usually after several thousand successful transfers. It's not clear whether the error was caused by hardware problems like breadboard crosstalk or if there was a timing error of some kind in my code. My plan now is to use hardware UART between the chips instead. Hopefully this will be more reliable.

There are now also enough pins to drive the LCD directly instead of using a shift register. When I tried doing this before with a 16x2 LCD it worked well but at some point in the project it began to randomly stop working. In retrospect I think it may have started after adding some of the other components to the project. In any case, sending signals to the 20x4 LCD from the LaunchPad does not work at all. This problem will have to wait until I can replace my broken multimeter and test all the voltages involved.