Recently I have been keeping busy with a few electronics projects, although it doesn't look like either of them will turn into anything. The first would transmit text wirelessly from a PC to a microcontroller to be displayed on an LCD. For this I planned to hack toy walkie talkies. This is not an ideal way to transfer text but I thought it would be fun to try different ways of making them work to start understanding wireless communication. Unfortunately, in my whole town I could only find one set of walkie talkies and one of them turned out not to work. The data being sent would not be especially sensitive but I still did not want to send it as plain text. This got me wondering about encryption, which I also have no experience with. There are many algorithms but I would need one very easy to compute since the microcontrollers involved would not be very powerful but would have to decrypt and transfer quickly. One solution that intrigued me was using a one time pad. Each microcontroller would have the same list of random numbers that would simply be added or XOR'ed with the data to encrypt and decrypt it. One time pad schemes have the advantage of being truly unbreakable as long as the numbers used are random and never repeated. A bigger advantage for me is that the microcontrollers could simply fetch the numbers from an SD card without having to compute anything. To get truly random numbers, though, I would need a hardware random number generator. These are a common project for hobbysts but not always easy to build correctly. One method uses a transistor in reverse breakdown mode but I decided against this because it requires 15 volts or more. Apparently the transistor also changes with age (perhaps due to being continuously run in a way it was not designed to be) and the characteristics of the numbers generated change too. Another interesting way I found was to measure the output of a 555 timer with a microcontroller ADC as shown here. This made me wonder if I could just measure the length of 555 pulses compared to the oscillator in a microcontroller to use clock drift as an entropy source. I connected a 555 running at 480Hz to the hardware counter of an MSP430 running at 16MHz to measure how many clock cycles each 555 cycle took and dumped 1,000,000 samples out over UART.